Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genome Ed ; 5: 1241035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144709

RESUMEN

The recalcitrance exhibited by many maize (Zea mays) genotypes to traditional genetic transformation protocols poses a significant challenge to the large-scale application of genome editing (GE) in this major crop species. Although a few maize genotypes are widely used for genetic transformation, they prove unsuitable for agronomic tests in field trials or commercial applications. This challenge is exacerbated by the predominance of transformable maize lines adapted to temperate geographies, despite a considerable proportion of maize production occurring in the tropics. Ectopic expression of morphogenic regulators (MRs) stands out as a promising approach to overcome low efficiency and genotype dependency, aiming to achieve 'universal' transformation and GE capabilities in maize. Here, we report the successful GE of agronomically relevant tropical maize lines using a MR-based, Agrobacterium-mediated transformation protocol previously optimized for the B104 temperate inbred line. To this end, we used a CRISPR/Cas9-based construct aiming at the knockout of the VIRESCENT YELLOW-LIKE (VYL) gene, which results in an easily recognizable phenotype. Mutations at VYL were verified in protoplasts prepared from B104 and three tropical lines, regardless of the presence of a single nucleotide polymorphism (SNP) at the seed region of the VYL target site in two of the tropical lines. Three out of five tropical lines were amenable to transformation, with efficiencies reaching up to 6.63%. Remarkably, 97% of the recovered events presented indels at the target site, which were inherited by the next generation. We observed off-target activity of the CRISPR/Cas9-based construct towards the VYL paralog VYL-MODIFIER, which could be partly due to the expression of the WUSCHEL (WUS) MR. Our results demonstrate efficient GE of relevant tropical maize lines, expanding the current availability of GE-amenable genotypes of this major crop.

2.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047735

RESUMEN

Plant surface properties are crucial determinants of resilience to abiotic and biotic stresses. The outer layer of the plant cuticle consists of chemically diverse epicuticular waxes. The WAX INDUCER1/SHINE subfamily of APETALA2/ETHYLENE RESPONSIVE FACTORS regulates cuticle properties in plants. In this study, four barley genes homologous to the Arabidopsis thaliana AtWIN1 gene were mutated using RNA-guided Cas9 endonuclease. Mutations in one of them, the HvWIN1 gene, caused a recessive glossy sheath phenotype associated with ß-diketone deficiency. A complementation test for win1 knockout (KO) and cer-x mutants showed that Cer-X and WIN1 are allelic variants of the same genomic locus. A comparison of the transcriptome from leaf sheaths of win1 KO and wild-type plants revealed a specific and strong downregulation of a large gene cluster residing at the previously known Cer-cqu locus. Our findings allowed us to postulate that the WIN1 transcription factor in barley is a master mediator of the ß-diketone biosynthesis pathway acting through developmental stage- and organ-specific transactivation of the Cer-cqu gene cluster.


Asunto(s)
Arabidopsis , Hordeum , Hordeum/genética , Hordeum/metabolismo , Ceras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Epidermis de la Planta/genética
3.
Front Plant Sci ; 13: 923717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898231

RESUMEN

Barley (Hordeum vulgare L.) grain pigmentation is caused by two types of phenolic compounds: anthocyanins (which are flavonoids) give a blue or purple color, and melanins (which are products of enzymatic oxidation and polymerization of phenolic compounds) give a black or brown color. Genes Ant1 and Ant2 determine the synthesis of purple anthocyanins in the grain pericarp, whereas melanins are formed under the control of the Blp1 gene in hulls and pericarp tissues. Unlike anthocyanin synthesis, melanin synthesis is poorly understood. The objective of the current work was to reveal features of the phenylpropanoid biosynthesis pathway functioning in melanin-accumulating barley grains. For this purpose, comparative transcriptomic and metabolomic analyses of three barley near-isogenic lines accumulating anthocyanins, melanins, or both in the grain, were performed. A comparative analysis of mRNA libraries constructed for three stages of spike development (booting, late milk, and early dough) showed transcriptional activation of genes encoding enzymes of the general phenylpropanoid pathway in all the lines regardless of pigmentation; however, as the spike matured, unique transcriptomic patterns associated with melanin and anthocyanin synthesis stood out. Secondary activation of transcription of the genes encoding enzymes of the general phenylpropanoid pathway together with genes of monolignol synthesis was revealed in the line accumulating only melanin. This pattern differs from the one observed in the anthocyanin-accumulating lines, where - together with the genes of general phenylpropanoid and monolignol synthesis pathways - flavonoid biosynthesis genes were found to be upregulated, with earlier activation of these genes in the line accumulating both types of pigments. These transcriptomic shifts may underlie the observed differences in concentrations of phenylpropanoid metabolites analyzed in the grain at a late developmental stage by high-performance liquid chromatography. Both melanin-accumulating lines showed an increased total level of benzoic acids. By contrast, anthocyanin-accumulating lines showed higher concentrations of flavonoids and p-coumaric and ferulic acids. A possible negative effect of melanogenesis on the total flavonoid content and a positive influence on the anthocyanin content were noted in the line accumulating both types of pigments. As a conclusion, redirection of metabolic fluxes in the phenylpropanoid biosynthesis pathway occurs when melanin is synthesized.

4.
PeerJ ; 7: e6266, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30671306

RESUMEN

BACKGROUND: Anthocyanin compounds playing multiple biological functions can be synthesized in different parts of barley (Hordeum vulgare L.) plant. The diversity of anthocyanin molecules is related with branching the pathway to alternative ways in which dihydroflavonols may be modified either with the help of flavonoid 3'-hydroxylase (F3'H) or flavonoid 3',5'-hydroxylase (F3'5'H)-the cytochrome P450-dependent monooxygenases. The F3'H and F3'5'H gene families are among the least studied anthocyanin biosynthesis structural genes in barley. The aim of this study was to identify and characterise duplicated copies of the F3'H and F3'5'H genes in the barley genome. RESULTS: Four copies of the F3'5'H gene (on chromosomes 4HL, 6HL, 6HS and 7HS) and two copies of the F3'H gene (on chromosomes 1HL and 6HS) were identified in barley genome. These copies have either one or two introns. Amino acid sequences analysis demonstrated the presence of the flavonoid hydroxylase-featured conserved motifs in all copies of the F3'H and F3'5'H genes with the exception of F3'5'H-3 carrying a loss-of-function mutation in a conservative cytochrome P450 domain. It was shown that the divergence between F3'H and F3'5'H genes occurred 129 million years ago (MYA) before the emergence of monocot and dicot plant species. The F3'H copy approximately occurred 80 MYA; the appearance of F3'5'H copies occurred 8, 36 and 91 MYA. qRT-PCR analysis revealed the tissue-specific activity for some copies of the studied genes. The F3'H-1 gene was transcribed in aleurone layer, lemma and pericarp (with an increased level in the coloured pericarp), whereas the F3'H-2 gene was expressed in stems only. The F3'5'H-1 gene was expressed only in the aleurone layer, and in a coloured aleurone its expression was 30-fold higher. The transcriptional activity of F3'5'H-2 was detected in different tissues with significantly higher level in uncoloured genotype in contrast to coloured ones. The F3'5'H-3 gene expressed neither in stems nor in aleurone layer, lemma and pericarp. The F3'5'H-4 gene copy was weakly expressed in all tissues analysed. CONCLUSION: F3'H and F3'5'H-coding genes involved in anthocyanin synthesis in H. vulgare were identified and characterised, from which the copies designated F3'H-1, F3'H-2, F3'5'H-1 and F3'5'H-2 demonstrated tissue-specific expression patterns. Information on these modulators of the anthocyanin biosynthesis pathway can be used in future for manipulation with synthesis of diverse anthocyanin compounds in different parts of barley plant. Finding both the copies with tissue-specific expression and a copy undergoing pseudogenization demonstrated rapid evolutionary events tightly related with functional specialization of the duplicated members of the cytochrome P450-dependent monooxygenases gene families.

5.
Bioinformatics ; 35(1): 119-121, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931085

RESUMEN

Summary: Standardized interfaces for efficiently accessing high-throughput sequencing data are a fundamental requirement for large-scale genomic data sharing. We have developed htsget, a protocol for secure, efficient and reliable access to sequencing read and variation data. We demonstrate four independent client and server implementations, and the results of a comprehensive interoperability demonstration. Availability and implementation: http://samtools.github.io/hts-specs/htsget.html. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...